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wavenumber of the roll pattern ; 
coefficient in first order velocity field 
representation ; 
coefficient in the inhomogeneous part of the 
second order velocity field repre~n~tion ; 
coefficient in the inhomogeneous part of the 
third order velocity field representation; 
coefficient in the homogeneous part of the 
second order velocity field representation ; 
coefficient in the inhomogeneous part of the 
third order velocity field representation ; 
depth of the convection layer ; 
coefficient in the homogeneous part of the 
third order velocity field representation; 
vertical profile of the first order velocity 
field representation ; 
thermal diffusivity; 
coefficient in the homogeneous part of the 
second order velocity held representation ; 
PrandtI number Pr = V/D; 
coellicient in the homogeneous part of the 
third order velocity field representation ; 
Rayleigh number; 
critical Rayleigh number; 
Rayleigh number on the neutral curve; 
temperature difference applied to the layer; 
convective vetocity; 

vertical component of the convective 
velocity; 

x, Y. coordinates in the horizontal plane; 
z, coordinate in the vertical direction, 

SHORTER COMMUNICATIONS 

WAVENUMBER DEPENDENCE OF VELOCITY FIELD AMPLITUDE 
IN CONVECTION ROLLS-THEORY AND EXPERIMENTS 

M. DUBOIS,* C. NORMAND+ and P. BERGS* 

(Received 15 Se~~~~ber 1977) 

NOMENCLATURE 

Greek symbols 

@, coefficient of thermal expansion; 
,E, defined in formula @a); 
s, reduced deviation of the Rayleigh number to 

the critical one E = (Ra - Ra,)/Ra,; 

y, viscosity; 
0, temperature perturbation ; 
Pi> coefficient in velocity field representation. 

Special symbol 
y, linear operator 

INTEODUCTION 
THE PROPERTIES of a fluid layer which undergoes convective 
motion are characterized by the Rayleigh number Rowhich is 
proportional to the vertical thermal gradient AT applied to 
this layer and by the wavelength A of the convective oattern. 
pattern which consists of strai-&t rolls in the case of the stable 
structures we observed within our experimental conditions. 
The critical value Ra, corresponds to the onset of the 
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convection, its value is Ra, = 1707 when the preferred rolls 
have the critical wavelength A = A, = 2d, d being the depth 
of the layer. Otherwise we know that for moderately super- 
critical Rayleigh number Ra 2 Ra, bidimensional roll struc- 
turescan exist with wavelength other than A, within a certain 
range of A # A, [l, 21 depending on the Rayleigh number. 
This problem has been investigated by Busse et al. [3,4], who 
performed calculations and experiments which results are 
qualitatively pictured by the “Busse balloon” as drawn on 
Fig. 1. It represents a curve in the (Ra, a) diagram (a = Zrrd/A) 
inside which all the convective bidimensional modes are 
stable with respect to certain kinds of disturbances. 

In previous works [S,6] we studied quantitatively the 
spatial behaviour of the velocity field vs Ra for modes of 
critical wavelength A,, and compared the results with calcu- 
lations performed using perturbative theory [7,8]. The aim of 
this paper is to extend our knowledge of the convective 
velocity amplitude for convective modes with A # AC in 
comparison with theoretical results. 

(A) T~ORE~iCAL RFSULTS 

The calculation of the velocity field amplitude was perfor- 
med using a perturbative method. The technical aspects of 
this procedure, related to the Rayleigh-Btnard problem have 
been already described by several authors [7,9, lo]. The 
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FIG. 1. Stability diagram of convection structures the cross- 
wise points corresponding to the present study. The vertical 
straight line at a, represents the, previously studied domain 

Cg, 5261. 

theoretical model which describes the physical situation 
consists in a layer of fluid confined between two horizontal 
walls of infinite extent, rigid and perfectly conducting. The 
equations of motion are the Navier-Stokes equations in the 
Boussinesq approximation where the viscosity Y, the thermal 
diffusivity D and the expansion coefficient c( may be regarded 
as constant. In the steady state and in the limit of high Prandtl 
number this set of equations reduces to the usual sixth order 
differential equation in the variable W, vertical component of 
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the vcltrclty II. In a dimensionless form it expresses ah follows 

IA’ ~- RCIA! III = A,(I”\‘)il Ilil) 

the scaling factor> used for the velocity C. the temperature 
disturbance 0 and the coordinates arc respectivelv DC/. 
Krr ‘AT and tl. A, is the hori,x~ntal Laplacian: A, = ;-t +;z 
and the boundary conditions arc 

The equation (I a) is solved by pertul-bation. Nut Instead 01 
the usual perturbation theory around the critical point of 

coordinates (Rtr,, tr,) which gives only finite amplitude so- 

lutions for rolls pattern of critical wavenumber we are doing a 
perturbation theory starting from any point [Ru,(u), tl] 

located on the curve of marginal stability (Fig. 1). This allows 
to perform calculations for any point (Rrr. u) laying in the 
stable domain situated above the neutral curve. Then the 
Rayleigh number Ru expands as 

Ro = Ko,,(trl+j R~i”i(~~li~.ZR~i’Zi(~~~ 

* r:‘Rd3’(rrl t (?a) 

wherc_r: IS an arbitrary small parameter. 
Analogous expansions hold for U and 0 

U =,.!““(~I)+~:‘U”‘(n)+~:“U”‘(trI~, (‘b) 

0 -_CO(‘~(tri t-_i:-‘/J’*l(‘,)+i.iO’~‘lr,) + (XI 

Apart from the fact that all parameters R’“‘. U”“. fl”” arc 

functions of 0, the calculation looks like very much as in the 
standard case and we shall only give a fe& steps of the 

calculation. Inserting (2a.b.c) in (I ) leads to :I set of in- 
homogeneous dill’erential equatlonc 

T-he unknown parameters Rr~‘“‘(cr I arc detcrmlncd .II each 
order by the existence conditions. Since it appears that ;!I1 
coeflicients with an odd supcrscl-ipt are null. the value of,:* ~b 
given at the lowest order by 

.’ 
_ ( “‘1,,f$” )’ z 

To describe bidlmenslonal trolls along the VY’ directlot wItI 
!,y’ axis we are lookIng for firsi order solutions of the form 

U”“(,,) = cosCr\/ (:I 

u hcrc 

The second order solution IS the sum of a particular 

Inhomogeneous solution and the homogeneous one 

*In experimental works, the symbol S: is often used as the 
relative deviation of the Rayleigh number from the critical 

KU-Kc,, 
one as i: = ; 

WC measured the velocity componcnt~ ~11 a convsctl\c tlu~! 

confined between two horizontal copper- plates and inside 2~ 
plexiglass rectangular frame; the hor,zontal extension of the 
Ilurd layer is 10 x 3 cm’: Its depth i\ t/ ~ I cm The studied 
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fluid IS sihconc oil of t’randtl numh~i /‘I /I -. 10 uhcrc 
I’ -= I. lX~O.01 Stokes at 30 C .~nd I). the thzrm,tl dill’usivil> 
IS (I.14~0.04)1O~“cm”s ‘. I hc 1OCilI wloclt> I\ measured 

by a laser-Doppler anemometer. Ihc results WC give here are 
related to the vertical component of the velocity CV. mcasurcd 

in the mid height plane of the layer. 
We emphasize the fact that all the convcctlvc SITucturc~~ 

reported in this study consist of straight bidimcnsional rolls. 
parallel to ?“I’ axis, so the velocity 1s independent upr-in L 
Note that y’y axis is parallel to the short side of the frame and 
Y’Y parallel to the larger one. 

As mentioned in [6], the velocity IS periodic vs \ and IC:I. 

values ofRrc < 1 I Rtr, wechecked that the verticd/ component 
MT is well described by the follo\vlng formulCt 

W(\.Z) = iY’(~)cos(uu)+~-‘c~~c~l~~2~r\ I 
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the origin of the x-axis being taken at a lateral boundary. 
Indeed, (6) well describes the behaviour of the vertical 
velocity except in the vertical boundary layers confined in a 
very narrow region near the lateral boundaries. W’(z), 
I?‘(z), m3(z) are the respective Fourier amplitudes of the 
fundamental, second and third harmonic of the main wave- 
number a. The variation of these amplitudes with respect to 
the wavenumber a are studied by Fourier analysis of the 
dependences W(x,z = 0) obtained at fixed values of R and 
a-these analysis are performed by means of a computer 
program specially designed by Tournarie [l I]. As a result of 
the theory, it appears that m(‘)(z) and ific3’(z) are maxi- 
mum at z = 0 [m’(O) = WAX and @&;l whereas 
mz(z = 0) is null. Furthermore, we have 

and 

where W(‘) and W(3.3’ are the dimensionless coefficients given 
in Table 1. 

FIG. 2. Spatial dependences of the vertical velocity com- 
ponent W vs x (arbitrary origin) at Ra 2 11400 for 
two wavelengths. Dashed line represents the computer 
best fit with curve A: A = 24.4mm; a = 2.57; l%‘* = 294 
+2Fms-‘; @* = 3.1+2pms-‘; k’ = 76:5f2pms-‘; 
curve B: A = 15.06mm; a = 4.17; VV’ = 371*2pms-‘; 

mz = 6.8+2Fms-‘; m3 = 30+2pms-‘. 

2. The structures 
In the case of the geometry of the studied layer the different 

wavelengths have been obtained as follows: 
(a) A = Ae. When the convection is established at a value 

of AT corresponding to Ra u 3Ra, and if further we gently 
increase or decrease AT, the structure has the critical 
wavelength A = A,, which remains stable in the domain Ra, 
<Ra < IlRa, 

(b) A < A,. If the layer is suddenly submitted to a large 
value of AT, corresponding to 6Ra, < Ra < SRa,, we obtain 
structures which wavelength is lower than A,. 

(c) A z A,. If, from a well-established structure, with 
wavelength A,, we further increase AT at values larger than 
lOAT,(Ra > llRa,) one and further two rolls disappear at 
the lateral boundaries giving a structure with a wavelength A 
> A, ; this new value of A can be maintained at lower values 
of Ra by hysteresis phenomenon [ 121. 

So we have been able to perform measurements for values 
of A ranging from 0.75/\, to 1.22A, (2.57 < a < 4.17). We 
must notice that for Ra = 11400 at which we have performed 
the most part of our measurements, we could not obtain other 
stable cqnvective structures; the observed values of the 
wavenumber a are extended along the whole width of the 
Busse balloon, as shown on Fig. 1. 

The study of the x-dependences of W(z = 0), see for 
instance Fig. 2, show that only the fundamental mode and its 

2,5 3 3#5 la+ 

FIG. 3. Amplitudes of the vertical velocity component W vs a 
for Ra * 11400: @I experimental points corresponding to 
~’ ; @ experimental points corresponding to lV3 ; striped 
areas correspond to the theoretically (Normand et al. [7]) 
computed values including physical uncertainty, dashed lines 
correspond to the \lalues deduced from Busse’s calculations. 

Table 2. Measured.and calculated velocity amplitudes as a function of the wavenumber a for Ra 
= 114OO(Winl.m-‘). 

a 2.57 2.84 3.13 3.40 3.80 4.17 

Experimental 295k7 314+7 333+7 346&8 36758 37228 
76&4 66+4 54+4 46&3 32&3 30+3 

Present 285 305 321.5 334 346 
theory 70.7 46.2 29.7 19.6 11.1 

Busse’s 332 359 382 398 415 
theory 86 73.4 60.7 49.3 36.7 
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third harmonic are needed to account for the behaviour of the 
vertical velocity component in the midplan of the cell. We 
have searched for the presence of the fourth and iifth 
harmonics, but could not establish their presence. We 
checked also that there was no si~ni~~~~llt velocity component 
along r’y i.e. the velocity field was bidirne~~si~~~~~~l The 
variations of @‘I and %’ with respect to (I are given on Fig. 
3 and Table 2, for a value of Ru 2 I1 400. We see that the 
amplitude of the fundamental mode \p’ increases M ith LI. 
when @” is decreasing; so the amount of anharmonicrty 15 
greater when the wavelength is smaller’ (see Fig. 2). From zn 
other point of view, we checked the v~iri~ltion of ci: and w3 
with J&l for the structure with i, = 2.57 and found approui- 
matively the expected power law dependences. 

On the Fig. 3 (and Table 1), we give also the velocity 
amplitudes deduced from the calculated values 1+“” and 
W’“.3’. These ones are represented by striped areas. their 
width being given by the experimental uncertainty on I3 
and Ru. Furthermore, we draw for comparison the \aiucb 
deduced from Busse’s results using a Gaierkin procedure. 
The corresponding amplitudes? are not precise for they are 
obtained from an estimate of parameters taken fr(lrn a 
published diagram (uncertainty k S”,,). 

In conclusion, the dependence with respect to (I of the 
measured amplitude of the fundamental mode IS hell de- 
scribed by the perturbative method. The higher values 
deduced from Busse’s calculations can be mainly explained 
by the fact that hrs parameter which gives the fuundn- 
mental amplttude does not follow the power la\ in [IRo 
- Rtr,);Ru,]]‘*. On the contrary. for the third harmonic 

amplitudes, the agreement between the experimental pomts 
and the values calculated from Busse I\ very good when the 

*We can notice that the total mass Fiux carried by 
convection and deduced from velocity profiles is decreasing 
when A increases 

iThere is a misprint in Bussc’s paper 131 smce the ?alues 01 

the coefficients h,, reported in its Fig. ! are not coherent with 
the results of the Table I They become consistent if \vc drop it 
factor x in the value ofh 

perturbatlvc method gives lower value> :~nd ;L different 
variation law with II. 

many helpful discussions and valuable suggestlonc 
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LI j, l/Z, (13. it<,. turbulence structure parame(ers. iI, I, I!. 

L. 
assumed constant: 
length scale defined by equation (2 I: - 1ir. 

I,’ 

$1’ 

T. 

mixing length = -. ijFi I2 ‘. ’ I(( I’/iy); 
turbulent Prandtl number: 
turbulent kinematic pressure tluctuation : 
turbulent kinetic energy ( =z +F + 71: 
difference between local and mean and free 
stream ambient temperalures: 

Reynolds shear stress: 
longitudinal heat flux. 
friction velocity : 
normal heat Rux ; 
coordinates in longitudinal {~tream\visei. 
normal (to wall) and spxlwisc directions 
respectively: 


