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NOMENCLATURE

a, wavenumber of the roll pattern;

A coefficient in first order velocity field
representation

A coefficient in the inhomogeneous part f)f the
second order velocity field representation;

Ay cocfficient in the inhomogeneous part of the
third order velocity field representation;

b;, coefficient in the homogeneous part of the
second order velocity field representation ;

By, coefficient in the inhomogeneous part of the
third order velocity field representation ;

d, depth of the convection layer;

d., coefficient in the homogeneous part of the
third order velocity field representation;

f(z), vertical profile of the first order velocity

field representation ;
D, thermal diffusivity ;
Di coefficient in the homogeneous part of the
second order velocity field representation;
Pr, Prandt] number Pr = v/D;
i coefficient in the homogeneous part of the
third order velocity field representation ;
Ra, Rayleigh number ;

Ra,,  critical Rayleigh number;
Ra,,  Rayleigh number on the neutral curve;
AT, temperature difference applied to the layer;
U, convective velocity;
W, vertical component of the convective
velocity;
x,y,  coordinates in the horizontal plane;
z, coordinate in the vertical direction.
Greek symbols
o, coefficient of thermal expansion;
& defined in formula (2a);
g, reduced deviation of the Rayleigh number to
the critical one ¢ = (Ra—Ra,)/Ra,;
v, viscosity ;
0, temperature perturbation;
His coefficient in velocity field representation.
Special symbol
Z, linear operator.

INTRODUCTION

THE PROPERTIES of a fluid layer which undergoes convective
motion are characterized by the Rayleigh number Ra-which is
proportional to the vertical thermal gradient AT applied to
this layer and by the wavelength A of the convective pattern,
pattern which consists of straight rolls in the case of the stable
structures we observed within our experimental conditions.
The critical value Ra, corresponds to the onset of the
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convection, its value is Ra, = 1707 when the preferred rolls
have the critica] wavelength A = A_ ~ 2d, d being the depth
of the layer. Otherwise we know that for moderately super-
critical Rayleigh number Ra 2 Ra, bidimensional roll struc-
tures can exist with wavelength other than A_within a certain
range of A # A_ [1,2] depending on the Rayleigh number.
This problem has been investigated by Busse er al. [3, 4], who
performed calculations and experiments which results are
qualitatively pictured by the “Busse balloon” as drawn on
Fig. 1. It represents a curve in the (Ra, a) diagram (a = 2rd/A)
inside which all the convective bidimensional modes are
stable with respect to certain kinds of disturbances.

In previous works [5, 6] we studied quantitatively the
spatial behaviour of the velocity field vs Ra for modes of
critical wavelength A, and compared the results with calcu-
lations performed using perturbative theory [ 7, 8]. The aim of
this paper is to extend our knowledge of the convective
velocity amplitude for convective modes with A # A_ in
comparison with theoretical results.

(A) THEORETICAL RESULTS

The calculation of the velocity field amplitude was perfor-
med using a perturbative method. The technical aspects of
this procedure, related to the Rayleigh-Bénard problem have
been already described by several authors [7,9,10]. The
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F1G. 1. Stability diagram of convection structures the cross-

wisq points corresponding to the present study. The vertical

straight line at a, represents the previously studied domain
[8,5,6]

theoretical model which describes the physical situation
consists in a layer of fluid confined between two horizontal
walls of infinite extent, rigid and perfectly conducting. The
equations of motion are the Navier-Stokes equations in the
Boussinesq approximation where the viscosity v, the thermal
diffusivity D and the expansion coefficient « may be regarded
as constant. In the steady state and in the limit of high Prandt!
number this set of equations reduces to the usual sixth order
differential equation in the variable W, vertical component of
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the velocity U. In a dimensionless form it expresses as follows

(A~ RaA W = — A (U-V)

the scaling factors used for the velocity U. the temperature

disturbance ¢ and the coordinates are respectively D.d.

Ra"'AT and d. A, is the horizontal Laplacian: A, = 02 +02
and the boundary conditions are

R4

W=

o

{1a)

=AW=0 at -= 41 (1b)
where =" is the vertical axis.

The equation (1a)is solved by perturbation. But instead of
the usual perturbation theory around the critical point of
coordinates (Rua,, a.) which gives only finite amplitude so-
lutions for rolls pattern of critical wavenumber we are doing a
perturbation theory starting from any point [Rag(a), «]
located on the curve of marginal stability (Fig, 1). This allows
to perform calculations for any point (Ra, a) laying in the
stable domain situated above the neutral curve. Then the
Rayleigh number Ru expands as

Ra = Ruglai+zRa"ai+e?Ra P a)

/»75“Ru”'(al+... (2a)
where ¢ 1s an arbitrary small parameter.
Analogous expansions hold for U and ¢
U = UMa) +2UP a4+ 62U a4+ ... (2b)
0 =0+ 220+ 70N+ (2¢)

Apart from the lact that all parameters R™, U™, 0" are
functions of ¢, the calculation looks like very much as in the
standard case and we shall only give a few steps of the
calculation. Inserting (2a,b.c) in (1) leads to a set of in-
homogencous differential equations
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with
2 2,3 2 y
ip; =42y +da*Ruplay =0 and o= g,

The RHS of the third order cquation provides both terms
proportional to cos ax, so-called fundamental mode. and 1o
cos 3ax. so-called third harmonic

This allows dividing the third order sotutions i fawe parts

W'ay = WD B i

where the second superscript account {or the harmoniciiy
with respect to the x coordinate. We ire notinterested here
W which is difficult to observe experimentally. But Wt
which can be measured accurately expross s

3 b A i
WS a) = cos dux { YoMy eoshiy, gt e
3 3 ‘
= 2 2 Byeosh(u+paz - N odieoshg s 18
P et ! ’
with

(qf = 9a*) =907 Ru, (ay =

The coefficients A, d;. b; being determined successively at
cach order by the boundary conditions. The results reported
here are the maximum value of W™/ TRa™']Y" and
WD TRa'™ Y2 evaluated in the mid height plane of the
layer where z = 0, so that expressions (3) and (5) take « very
simple form. The calculation of these expressions which
involves many complex numbers has been carried out on u
computer. The results obtained for different values of the
wavenumber a are given in Table {

(B) EXPERIMENTAL VMEASUREMENTS

1. Introduction
The experimental conditions were already reported in

STW ] = [AY - Rag (@A W ) = 0

"

W a)] = >_ Ra™ (YW Py - A (U a)- ViU P {a)]

Pl
The unknown parameters Ra"'(¢) are determined at cach
order by the existence conditions. Since it appears that all
coefficients with an odd superscript are null. the value of £* 15
given at the lowest order by
Ra— Ragla) )1 :
- Ra®(a)

To describe bidimensional rolls along the xx' direction with
vy axis we are looking for first order solutions of the form

W' a) = cosax/(2)

where

f(zy=3 A4, coshy: (3
il
with

(F =@ P+ @ Raglat = 0
# 0

is 4 general solution of the equation

-2 1

¢ L4
(; ;—d ) + uzl{ao(a)
(2

F=0.

The second order solution is the sum of a particular
inhomogeneous solution and the homogeneous one
i3
W' a) = cos Zu_\-)) Y
i=t J

Y AP sinh (4 )z
= 3

!
¥

3
— ¥ b;sinh p,»:( 4
P )

*In experimental works, the symbol ¢ is often used as the
relative deviation of the Rayleigh number from the critical
Ra—~Rua,

onease = -
Ru,

we measured the velocity components of a convective fluid
confined bétween two horizontal copper plates and inside a
plexiglass rectangular frame ; the horizontal extension of the
Muid layer is 10 x 3em?; its depth is d = ¥ em. The studied

Tahle 1

Wi ISR

It Rala) P
[Ru [RaP
2.0 1783.5 02380 06305
28 17352 02700 0.4509
2 1711.3 0.2806 0.3287
32 1709.5 {31897 0.2428
34 1727.0 0.297+ [ERE N
3.6 1761.8 0.3039 01361
18 18128 0.3090 0028
4 1879.3 [SAERIR G078

fAuid is silicone o1t of Prandtl number Pro= « [ ~ {07 where
vo= 118 +0.01 Stokes at 20°C and D. the thermal diffusivity
is {1.14+0.04)10 *cm?s ' The local velocity 15 measured
by a laser-Doppler anemometer. The results we give here are
related to the vertical component of the velocity W, measured
in the mid height plane of the layer.

We emphasize the fact that all the convective structures
reported in this study consist of straight bidimensional rolls.
parallel to v’y axis, so the velocity is independent upon v
Note that y'y axis is parallel to the short side of the frame and
x'x parallel to the larger one.

As mentioned in {6], the velocity is periodic vs x and lor
values of Ra < 11Ra, we checked that the vertical component
W is well described by the following formula
W(x, 2} = W'(z)cos(ax)+ W) cos{2ux)

S WD eos (Jaxnt
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the origin of the x-axis being taken at a lateral boundary.
Indeed, (6) well describes the behaviour of the vertical
velocity except in the vertical boundary layers confined in a
very narrow region near the lateral boundaries. W(z),
W2(z), W?(z) are the respective Fourier amplitudes of the
fundamental, second and third harmonic of the main wave-
number a. The variation of these amplitudes with respect to
the wavenumber a are studied by Fourier analysis of the
dependences W (x,z = 0) obtained at fixed values of R and
a—these analysis are performed by means of a computer
program specially designed by Tournarie [11]. As a result of
the theory, it appears that W(z) and W®)(z) are maxi-
mum at z=0 [W'0)= WL, and W2,] whereas
W2(z = 0) is null. Furthermore, we have
w

w! =———B Ra—Ray(a)]*?
[Ra®]12 d [ 0

and

we:3) p
= RO 4 [Ra—Ray(a)]*?

where W and W¢-3 are the dimensionless coefficients given
in Table 1.

W}

sooWums,
'
A" ®
\
200 - %
%
+
~ £y
0 bt M A X
"85 60 ™, 65 0 ¥ 75mm
*.
‘K\ ¥
200 |~ \ rf
L ’*\ 4
v F
400L =t
Wyums 3,
o0 | #
+
A A
£ 1Y
+ \ 4 \
200~ o * 1{’ 4+
S ;
0 \80 i X
55 Y 65 ! 70 78 mm
L \f\ f
200~ *\ {
[
y
*
400~ 4

FiG. 2. Spatial dependences of the vertical velocity com-
ponent W vs x (arbitrary origin) at Ra =~ 11400 for
two wavelengths. Dashed line represents the computer
best fit with curve 4: A =244mm; g =2.57; W! =294
+2ums™'; W2=3.14+2pums™'; W3 =76:5+2ums™*;
curve B: A =1506mm; g=4.17; W' =371+2pms};
W?=68+2pums ;W3 =30+2ums™ L
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2. The structures

In the case of the geometry of the studied layer the different
wavelengths have been obtained as follows:

(a) A = A, When the convection is established at a value
of AT corresponding to Ra =~ 3Ra, and if further we gently
increase or decrease AT, the structure has the critical
wavelength A = A_, which remains stable in the domain Ra,
< Ra < 11Ra,.

(b) A < A_. If the layer is suddenly submitted to a large
value of AT, corresponding to 6Ra, < Ra < 8Ra,, we obtain
structures which wavelength is lower than A .

() A> A, If, from a well-established structure, with
wavelength A, we further increase AT at values larger than
10AT,(Ra > 11Ra,) one and further two rolls disappear at
the lateral boundaries giving a structure with a wavelength A
> A_; this new value of A can be maintained at lower values
of Ra by hysteresis phenomenon [12].

So we have been able to perform measurements for values
of A ranging from 0.75A_ to 1.22A, (2.57 < a <4.17). We
must notice that for Ra ~ 11400 at which we have performed
the most part of our measurements, we could not obtain other
stable convective structures; the observed values of the
wavenumber a are extended along the whole width of the
Busse balloon, as shown on Fig. 1.

The study of the x-dependences of W{z =0), see for
instance Fig. 2, show that only the fundamental mode and its

W um s’ Re= 11400

25 3

F1G. 3. Amplitudes of the vertical velocity component W vs a
for Ra ~ 11400: ® experimental points corresponding to
W!; @ experimental points corresponding to W?; striped
areas correspond to the theoretically (Normand et al. [7])
computed values including physical uncertainty, dashed lines
correspond to the values deduced from Busse’s calculations.

Table 2. Measured.and calculated velocity amplitudes as a function of the wavenumber a for Ra
= 11400 (Win ums™').

a 2.57 2.84 3.13 3.40 3.80 4.17
Experimental Wt 295+7 314+7 33347 346+8 367+8 37248
7/ 76+4 66+4 5444 46+3 3243 3043
Present w! 285 305 3215 334 346
theory w3 70.7 46.2 29.7 19.6 11.1
Busse’s w! 332 359 382 398 415
theory w3 86 73.4 60.7 49.3 36.7
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third harmonic are needed to account for the behaviour of the
vertical velocity component in the midplan of the cell. We
have searched for the presence of the fourth and fifth
harmonics, but could not establish their presence. We
checked also that there was no significant velocity component
along ¥y le. the velocity field was bidimensional. The
variations of W' and W* with respect to « are given on Fig.
3 and Table 2, for a value of Ry = 11400. We see that the
amplitude of the fundamental mode W' increuses with .
when W is decreasing ; so the amount of anharmonicity is
greater when the wavelength is smaller* (see Fig. 2). From an
other point of view, we checked the variation of W, and W,
with Ra for the structure with ¢ = 2.57 und found approxi-
matively the expected power law dependences.

On the Fig. 3 {and Table 2), we give also the velocity
amplitudes deduced from the calculated values W*'' and
W®3 These ones are represented by striped areas, their
width being given by the experimental uncertainty on D
and Ra. Furthermore, we draw for comparison the values
deduced from Busse’s results using a Galerkin procedure.
The corresponding amplitudest are not precise for they are
obtained from an estimate of parameters taken from a
published diagram (uncertainty +5°,).

In conclusion, the dependence with respect to « of the
measured amplitude of the fundamental mode is well de-
scribed by the perturbative method. The higher values
deduced from Busse's calculations can be mainly explained
by the fact that his parameter which gives the funda-
mental amplitude does not follow the power law in [{Ru
~Ra }/Ra.]"% On the contrary, for the third harmonic
amplitudes, the agreement between the experimental points
and the values calculated from Busse 1s very good when the

*We can notice that the total mass flux carried by
convection and deduced from velocity profiles is decreasing
when A increases.

+There is a misprint in Busse’s paper | 3] since the values of

the coefficients b ,, reported in its Fig, 3 are not coherent with
the results of the Table I. They become consistent if we drop a
factor m in the value of b
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perturbative method gives lower values and o different
variation law with a.
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NOMENCLATURE
Wy, dy. dy, 4, turbulence structure paramelers.
" assumed constant

L, length scale defined by equation (2):

I, mixing length = —"2/(QU ¢y);

Pr,, turbulent Prandtl number ;

;3 turbulent kinematic pressure fluctuation
q°, turbulent kinetic energy (=u> + 2 +w?):
T, difference between local and mean and free

stream ambient temperatures:

[ER focal mean velocity
u, 1y, velocity Huctuationsin x, vand ¢
directions

— i, Reynolds shear siress;

~ufl. longitudinal heat flux:

U friction velocity:

RN normal heat flux;

X, v. o, coordinates in longitudinal {streamwise},

normal (to wall} and spunwise directions
respectively:



